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Abstract

Virtually all analyses of the superconductor-—
insulator-superconductor (SIS) quasiparticle mixer have
employed the quantum theory of mixing in its

three-frequency approximate form. This approximation
is valid only in the limit of very large junction
capacitance. For finite capacitance, these analyses

may be seriously in error. To remedy this, a computer
program has Dbeen developed which uses the quantum
theory of mixing in its most general form, treating the
large-signal properties of the mixer in the time
domain. The terminating impedances at the harmonics of
the local oscillator frequency and their sidebands can
be arbitrary. Using this analysis, the effect of
finite junction capacitance on one SIS mixer's
performance is described. This gives an insight into
the range of validity of the three—frequency model.

Introduction

The superconductor-insulator-superconductor (SIS)
quasiparticle mixer is  now competitive  with
conventional Schottky mixers for very low mnoise
millimeter-wave receivers. SIS receivers are currently

in routine use at at least four radio astronomy
observatories.
The rapid improvement in SIS mixer performance

has been made possible by the application of the
quantum theory of mixing, developed by J.R. Tucker. 1,2
In almost every case, this theory has been used in the
three-frequency approximation, the sole exception being
the five-frequency analysis described in Ref. 3. In
the three-frequency approximation, the crucial
assumption is that the local oscillator (LO) voltage is
perfectly sinusoidal, or equivalently, that every
harmonic of the LO frequency, Wos is short-circuited.
With this assumption, = the general equations of the
quantum theory of mixing' caun be cast into a relatively
simple form for either analytical or numerical analysis
of .an experimental mixer.

The sinusoidal LO assumption would appear to be
justified for those cases in which the impedance of the
mixer circuit is dominated by the geometrical
ecapacitance Cy of the SIS junction; many SIS mixers
have employed junctions which have a susceptance mpCJ
which is from 2 to 10 times .as large as their
normal-state conductance 1/Ry. This is indeed the case
for one mixer wusing a l4-junction array with w RyCy ~
10, which showed quite precise agreement with the
quantum theory predictions in the three-frequency
épproximation.4 Nevertheless, theFe is considerable
evidence, presented in Ref. 5, that the three~frequency
approximation is not always valid for junctions with an
“pRNCJ product below perhaps 4, in the sense that
harmonic conversion effects appear seriously to degrade
the mixer's performance. For the case of mixers with
wRyCy < 1.the three~frequency approximation should
certainly not be wvalid, although, for lack of . an
alternative, it has been used to analyze these mixers
as Well-é’7 Note, however, that Phillips and Dolan,8

whose junction capacitance, though not stated, is
presumably small, found their experiments in good
agreement with the quantum theory in the

A theoretical review of
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three—frequency approximation.
published experimental data on SIS mixers
in Ref. 9.
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A general method of numerical analysis for SIS
mixers, which allows arbitrary terminating impedances
for all the harmonic frequencies, is presented in this
paper. This analysis makes it possible to examine the
range of validity of the three-frequency results of the
quantum mixer theory. It also setrves as a general tool
for exploring the behavior of SIS mixers with small
capacitances for which the quasiparticle nonlinearity
should render the  junction voltage distinctly
nonsinusoidal.

This project is of immediate practical
importance. A large parasitic capacitance will
certainly have deleterious effects on the performance
of any mixer, unless it can be tuned out at the signal

frequency. Such tuning 1is difficult for a large
capacitance (i.e. wRNCy  ~ 10) at millimeter
wavelengths. Therefore, it 1is desirable to design an
SIS mixer with as small a capacitance as possible,

consistent with superior mixer performance.

Discussion of Methods

The solution of the general equations of the
quantum mixer theory in the sinusoidal L0 approximation
is straightforward,!»2 and 1is routinely done in the
frequency domain. When the LO harmonics are not
shorted, however, it becomes necessary to use an
iterative procedure until a self-consistent solution is
obtained for the periodic large-signal L0 voltage
waveform across the junction. Once the LO waveform has
been determined, computation of the small signal
properties of the mixer at the signal, image, IF, and
harmonic sideband frequencies is, a relatively simple
generalization of the three—-frequency solution. ’

For the general solution to the large signal
problem, it is convenient to formulate the equations of

the quantum mixer theory in the time domain. This has
been done for an SIS junction by Tucker, Ref. 10,
Appendix C. The inputs to this set of equations are

the measured de I-V characteristic of the junction
Idc(v) and the voltage waveform impressed across the
junction, V(t). The output from these nonlinear

equations is the current waveform, INL(t).

. The first and most difficult step in analyzing an
SIS mixer is the determination of the periodic LO
voltage waveform across the junction. The solution
must be consistent with the arbitrary terminating
impedances seen by the junction at all the .10
harmonics. To solve this problem, this paper will rely
upon the methods developed for the general analysis of
classical Schottky-barrier diode mixers.

been found  useful in
analysing a Schottky diode mixer in which the LO
waveform at the diode contains many harmonics. Kerrll
developed the multiple reflection technique, in which a
hypothetical “transmission line of arbitrary
characteristic impedance, Zp, is introduced between the

Two techniques have

nonlinear element and the linear embedding circuit.
This method has been found to converge. in all cases
tested; the rate of convergence depends on the
proximity of the embedding impedances at each LO
harmonic to ZO°12 There 1is no dependence upon the
estimate of the initial conditions. The other

technique, developed by Hicks and Khan,12’13 consists
of two dual methods, the voltage update and the current
update methods. This has also converged in all cases
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tested, and the rate of convergence depends upon the
proximity of the embedding impedances at each LO
harmonic to either short circuits or open circuits.

The essential elements of both the voltage update
method and the multiple reflection method have been
adapted to the general analysis of .SIS mixers, as
presented in this paper. The voltage update method is
preferred, especially for junctions with w RyCy > 0.5.
This is because the junction capacitance, which 1is
treated as. part of the SIS external circuitry, provides
an embedding impedance, which for higher
approaches a short circuit. Moreover, the use of the
voltage update method permits the nonlinear SIS
equations to be solved in ‘a simpler form. This is the
voltage-input, current-output mode which  is obtained
directly from the equations of Ref. 10. The multiple
reflection technique .and the current update method
require that the SIS nonlinear equations be solved on a

current—input, voltage—output basis, which adds an
extra iterative loop to the process. Thus, the voltage
update method has been used here since it usually

results in an order of magnitude decrease in CPU time
over that required by = the multiple reflection
technique. - (However, in cases for which w RyC; is less
than about 0.5, the latter method is often easier to
use and for this reason 1is included in the program

described in Ref. 14).

Anélzéis

The equivalent circuit used in this analysis is

shown in Fig. 1. The following input data are
required: (1) the embedding impedances at the LO
fundamental, its  harmonics and the  sideband

frequencies, (2) the SIS tunnel junction capacitance
and measured de¢ I-V curve, and (3) the magnitudes of
the dc and LO sources providing power.to the circuit.
Using the iterative algorithm described below, the
pumped voltage and current waveforms at the junction
are determined. A linear small-signal conversion
matrix is then derived from. the pumped waveform. This
gives. the conversion efficiency, the signal input
impedance and the IF output impedance. Finally, the
shot and thermal noise sources are introduced and the
same linear small signal analysis is used to determine
the mixer noise temperature.

Large Signal Analysis

For the large signal analysis using the voltage
update method, the cireuit of Fig. 1 is bisected at the
linear-nonlinear interface and each half 1is. treated
separately. The nonlinear portion of the circuit is
treated in the time domain while the embedding network,
which is taken to include the geometrical capacitance
of the junction, is treated in the frequency domain.
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Figure 1. SIS Mixer Circuit
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The time domain equations for the nonlinear
quasiparticle current through an SIS junction are given
by Tucker10;

v(t) t 1 ' '
() = —= ¢ In {U*(0) [ xCe-thHueDae'} (D

N, .
() =1%f [1ae (2 - 'Z%E] sin ot do )
U(t) = exp {i¢p()} &)
t L} 1
$(t) = - [ V(e )

where Iq. (V) is the measured dc I-V characteristic of
the junction; Ry 1s the normal resistance of the
junection; V(t) is the instantaneous voltage across the
junction; and INL(t) is the instantaneous quasiparticle
tunneling current.

These time domain equations
used to investigate the
phenomena in SIS mixers.15

have recently been
possibility of chaotic

The frequency domain equations for the linear embedding
network are found from (referring to Fig. 1):

Va :
—ILIN = [Ze(nwp) // Zc(nwp)] n = 2’3"";N’ (5)
n
V-V
-Il-L-WE‘l = [Zewp) // Zclwy)] (6
1
Vo - V,
e = [2O] W
0

LIN .
where vV, and I, are the ~amplitudes of the Fourier
components of V(t) and ILIN(ey o frequency nup, Vg
and Vg, are the amplitudes of the Thevenin equivalent
LO and de voltage sources, and Z (nw,) is the {impedance
of the equivalent external embegdlng circuit at
frequency MWy and Zc(nwp) = —i/nmpCJ.

The iterative voltage update algorlthm12
as follows:

proceeds

(i) Estimate the large signal voltage waveform across
the nonlinear tunmnel junction, V(t);

(ii) VUsing Eqs.(l) - (4), determine the current INL(t)
through the nonlinear element produced by the
voltage V(t);

(iii) Kirchhoff's current law gives ILIN(t) = —1NE(e);

(iv) Using a fast Fourler transform, obtain ILIN, n=0,
1, 2,¢¢. from 1L (t)
(v) Using Egs. (5) - (7), obtain the Voo =0, 1,

2,.., consistent with these I%IN H

(vi) Using an inverse fast Fourier transform, obtain
V() fro% this set of V,;
(vii) Compare V¥(t) and V(t). If they are "equal™, the
iteration is complete. If not, set the new V(t)
equal to pV#(t) + (1-p) V(t) and return to step
(ii). The convergence parameter, p, is normally

a value in the range 0 < p € 1 (Ref. 12).
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is called the “voltage update
method” because the mechanism for approaching the
self-consistent solution in a controllable fashion is
the updating of the junction voltage waveform with each
iteration in step (vii). This method converges more
rapidly the closer the linear embedding impedance is to

This procedure

a short circuit, and it may be shownl2 thae it will
always converge 1if the impedance of the linear
embedding network is smaller in magnitude than that of
the nonlinear circuit at all of the harmonic

This will be true for an SIS mixer whose
larger than some moderate value,

frequencies.
waNCJ product is
perhaps 0.5.

There 1is some discretion in
convergence parameter p, to give a reasonable
compromise between the speed of convergence and the
possibility of divergence. In this work, the choice of
p was fixed at unity since the use of an identity
element proves sufficient to guarantee convergence. A
resistive identity element cousists of the. parallel
combination of a resistance Ryp and a resistance ~“Rip-

choosing the

The net effect of the two parallel resistances on the
ciréuit performance 1is zero since one cancels the
effect of the other. However, in the large signal

analysis, convergence is improved since the resistance
Rip is 1lumped in parallel with the linear embedding
network and the resistance —Ryp is added 1in parallel
with the nonlinear circuit.l2 The effect of such an
addition is to enhance the voltage update properties of
the circuit by increasing the effective impedance of
the tunnel junction and simultaneously decreasing the
input impedance of the' embedding network. From
experience, setting Ryp equal to 0.5Ry has been found
effective.

Small Signal Analysis

The small signal
only be summarized here.
the, only frequencies which

analysis is standard and will
In the linear approximation,
can produce a response at

the IF frequency, wy, are the following sideband
frequencies (we use here the notation of Saleh16);
Wn = u“O + nwp, n = 0: i]-) 129‘,"’ tN’ (8)

where the largest LO harmonic considered is Nw,. All
lower sideband frequencies (n < 0) are seen to be
negative, a convention which simplifies the equations.
(For any physical linear circuit, Z(-w) = Z¥(y)).

The small-signal sideband currents and voltages
at the pumped junction are related by a (2N+1) x (2N+1)
admittance matrix whose elements Y are given in Ref.
1, Eq. (7.5). The matrix | Y, | is regarded as the
admittance matrix of a multifrequency multiport network
(see Ref. 17, Fig. 2) in which there is one port for
every sideband frequency. Following Ref. 1, Eq. (7.2),
the required quantities Wpg(nw,) are the Fourier
components of U(t) in Eq. (3%. Tﬁe embedding impedance
and junction capacitance are added in parallel with the
intrinsic junction resulting in an “"augmented network”.

The corresponding augmented admittance matrix 1is then
inverted to give the impedance matrix: :
- -1 ; -1
= + . ‘
I Zgn 1= 0 Yo + [Zolop)™ + 10nCyl 8y 1 175, (9)
The conversion efficiency from the signal port at

frequency w; to the IF at wgy is given by:
L7 = 4R, [ZgGw) 71 R [Ze (o)™ lzo112  10)
and the (complex) output admittance at the IF is:
| Y

out = %007} = Zelog)7h. an

least a half photon of. fluctuation energy,

minimum noise temperature T

Noise Analysis

. There are three major noise sources known to
contributé to the noise temperature of an SIS mixer:
(i) shot noise due to the statistical nature of the
current flow across the junction, (ii) thermal noise if
the embedding network is at a finite temperature, and
(iii) quantum noise due to the Heisenberg uncertainty
principle. The problem of quantum mnoise in tunnel
junction mixers, discussed in Ref. 9, has mnot been
clearly resolved, and it has been ignored in the
program. General considerations1 require that a "high
gain linear amplifier”™, such as the SIS mixer, add at
referred to
its dinput, to any incoming signal. This results in a
= fiw/2k, which is small at
the frequencies of interest (2.8 K at 115 GHz).

circuit of the SIS tunnel
thermal noise source and a

The thermal noise
generator at each

The equivalent noise
junction mixer contains a
shot noise source at each sideband.
is represented by a current
frequency, whose magnitude is given by Ref. 1, Eq.
(7.8). The thermal noise generatotrs at the various
sideband frequencies are uncorrelated, and so the noise
powers can be directly converted to the IF and added to
give the total ouput noise power due to thermal noise.

Shot noise is also characterized by a current
generator at each frequency, whose amplitude is given
in Ref. 1, Eq. (7.10). The various shot noise current
generators are correlatedl9,20 and so their effects at

the IF must be added vectorially. The final
contribution of the shot noise to the output noise of
the mixer is given in Ref. 1, Eq. (7.13) and Egq.
(7.16).

The total output noise power of the mixer is
obtained by combining the thermal and shot noise

components. The equivalent input noise temperature Ty

of the mixer 1s then found by referring the total
output power to the input of the mixer, and equating
the power 'to kTyB.

Typical Results

program was developed to
described above.
which will

A FORTRAN computer
perform the large and small analysis
This program is described fully in Ref. 14,
be available shortly. Several problems arise in
adapting the noplinear SIS circuit equations (Egs. 1
— 4) for numerical solutiom. The minus infinity lower
limit in Eq. 1 needs to be replaced by a suitably large
negative number. The differential dt' needs to be
replaced by a suitably small interval At. Finally,
potential errors due to right-hand side terms in Eq. 1
being approximately equal yet opposite in sign must be
evaluated. All three problems are discussed in Ref.
14, with suggested parameter values which gave accurate
solutious in the cases we have investigated.

The program has been verified for the case of
large junction capacitance by comparison with the
three~frequency analysis. In a number of cases (not
restricted to a large junction capacitance), the large
signal . waveforms predicted by this program were found
to be consistent with those calculated by an
independently  developed SIS chaos program.15 In
addition, the waveforms determined from the voltage
update method agreed with those from the multiple
reflection technique. The CPU time on an AMDAHL V6
required for each full mixer analysis (large signal and
small signal) is 0.5 min.



Although the program is still being tested and
debugged, some preliminary results have
which show the effect of finite junetion capacitance on
an SIS mixer. The experimentally measured I-V curve,
shown in Fig. 2, of a two—junction Pb-alloy SIS element
(fabricated by P. Timbie of Princeton University at NBS

Boulder) for which Ry =72 @ was - assumed to be in a
mixer circuit with a 113.9 GHz local oscillator. The
intermediate frequency was 1.0 MHz and the IF load

resistance was 50 Q. In this low IF limit the signal,
image, and LO source impedances must all be equal, and
they were chosen to be 55 + 192 @ (which includes Cy),
the value which maximizes the conversion efficiency at
a dec voltage in the center of the first photon step in
the three-frequency approximation. This. SIS mixer was
analyzed for a wide range of junction capacitance. In
each case the termination impedance at all higher
harmonics and sidebands (not including the 1O and its
sidebands) was the parallel combination of the
capacitive reactance and a resistance of 72. @
(arbitrarily chosen equal to Ry).

For each value of capacitance the LO power and
the dc voltage were optimized for maximum conversion on
the first photon step. The largest value of mixer
conversion gain, a few dB, was found in the 1limit of
large capacitance, and agreed with the three-~frequency
approximation. The conversion gain decreased to a
‘minimum of about unity at an w RNC product of unity,
but then increased again for smafler 0, RNC values. The
mixer noise temperatures corresponding to these results

showed an even less dramatic variation with
capacitance, remaining between 20 and 25 K. The mixer
output impedance was negative at all capacitance

values, while the input impedance was always positive.
It must be emphasized that even if  these conclusions
are verified for this specific mixer circuit, they may
be far from typical and should not be taken as general.

Conclusions

A FORTRAN computer program has been developed for
analyzing SIS mixers with arbitrary embedding
impedances at all LO harmonics and sidebands. This
program has been verified using the three~frequency
approximation and the multiple reflection algorithm.
For the specific preliminary example considered in this
paper, the optimum mixer performance is seen to occur
for large or very small values of mpRNCJ. Low values
of wpRNCy (roughly 0.3 to 2.0) lead to
in mixer performance.
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